Bcl2 retards G1/S cell cycle transition by regulating intracellular ROS.
نویسندگان
چکیده
Bcl2's antiapoptotic function is regulated by phosphorylation. Bcl2 also regulates cell cycle progression, but the molecular mechanism is unclear. Bcl2 is functionally expressed in mitochondria where it can act as an antioxidant that may regulate intracellular reactive oxygen species (ROS). Since ROS have been reported to act as second messengers in cell signaling, we tested whether Bcl2 phosphorylation regulates ROS and cell cycle progression. G1 --> S transition and ROS levels were measured in cells expressing either the gain of function phosphomimetic Bcl2 mutants S70E and T69E/S70E/S87E (EEE) or the nonphosphorylatable and survival-deficient mutants S70A and T69A/S70A/S87A (AAA). Expression of S70E and EEE but not the A-containing Bcl2 mutants retards G1 --> S transition by 35% to 50% and significantly slows cell growth in association with reduced levels of intracellular ROS. In addition to expression of the phosphomimetic Bcl2 mutants, either interleukin-3 withdrawal or treatment of cells with the antioxidant pyrrolidine dithiocarbamate (PDTC) also reduces intracellular ROS levels in association with up-regulation of p27 and accumulation of cells in G0/G1. Retardation of G1 --> S transition can be overridden by directly adding H2O2 to the cells in a mechanism that involves down-regulation of p27 and activation of Cdk2. Thus, Bcl2 may regulate G1 --> S transition by a novel signaling mechanism that couples regulation of intracellular ROS with p27 and Cdk2. Furthermore, phosphorylation of Bcl2 may functionally link its antiapoptotic, cell cycle retardation, and antioxidant properties.
منابع مشابه
Lipid from Infective L. donovani Regulates Acute Myeloid Cell Growth via Mitochondria Dependent MAPK Pathway
The microbial source, which includes live, attenuated, or genetically modified microbes or their cellular component(s) or metabolites, has gained increasing significance for therapeutic intervention against several pathophysiological conditions of disease including leukemia, which remains an incurable disease till now despite recent advances in the medical sciences. We therefore took up the pre...
متن کاملCholesterol Retards Senescence in Bone Marrow Mesenchymal Stem Cells by Modulating Autophagy and ROS/p53/p21Cip1/Waf1 Pathway
In the present study, we demonstrated that bone marrow mesenchymal stem cells (BMSCs) of the 3rd passage displayed the senescence-associated phenotypes characterized with increased activity of SA-β-gal, altered autophagy, and increased G1 cell cycle arrest, ROS production, and expression of p53 and p21Cip1/Waf1 compared with BMSCs of the 1st passage. Cholesterol (CH) reduced the number of SA-β-...
متن کاملmiR-150 inhibits proliferation and tumorigenicity via retarding G1/S phase transition in nasopharyngeal carcinoma
Cancer cells are characterized by a pathological manifestation of uncontrolled proliferation, which results in tumor formation. Therefore, it is necessary to improve understanding of the underlying mechanism of cell cycle control. Here, we report that miR‑150 is downregulated in nasopharyngeal carcinoma tissues and cells. Upregulation of miR‑150 suppresses nasopharyngeal carcinoma (NPC) cell pr...
متن کاملReactive Oxygen Species Are Required for Human Mesenchymal Stem Cells to Initiate Proliferation after the Quiescence Exit
The present study focuses on the involvement of reactive oxygen species (ROS) in the process of mesenchymal stem cells "waking up" and entering the cell cycle after the quiescence. Using human endometrial mesenchymal stem cells (eMSCs), we showed that intracellular basal ROS level is positively correlated with the proliferative status of the cell cultures. Our experiments with the eMSCs synchro...
متن کاملA cell cycle and mutational analysis of anchorage-independent growth: cell adhesion and TGF-beta 1 control G1/S transit specifically
We have examined cell cycle control of anchorage-independent growth in nontransformed fibroblasts. In previous studies using G0-synchronized NRK and NIH-3T3 cells, we showed that anchorage-independent growth is regulated by an attachment-dependent transition at G1/S that resembles the START control point in the cell cycle of Saccharomyces cerevisiae. In the studies reported here, we have synchr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 102 9 شماره
صفحات -
تاریخ انتشار 2003